A hybrid FEM for solving the Allen-Cahn equation
نویسندگان
چکیده
Keywords: Allen–Cahn equation Finite element method Operator splitting method Unconditionally stable scheme a b s t r a c t We present an unconditionally stable hybrid finite element method for solving the Allen– Cahn equation, which describes the temporal evolution of a non-conserved phase-field during the antiphase domain coarsening in a binary mixture. Its various modified forms have been applied to image analysis, motion by mean curvature, crystal growth, topology optimization, and two-phase fluid flows. The hybrid method is based on the operator splitting method. The equation is split into a heat equation and a nonlinear equation. An implicit finite element method is applied to solve the diffusion equation and then the nonlinear equation is solved analytically. Various numerical experiments are presented to confirm the accuracy and efficiency of the method. Our simulation results are consistent with previous theoretical and numerical results.
منابع مشابه
The existence of global attractor for a Cahn-Hilliard/Allen-Cahn equation
In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0
متن کاملAn unconditionally stable hybrid numerical method for solving the Allen-Cahn equation
We present an unconditionally stable second-order hybrid numerical method for solving the Allen–Cahn equation representing amodel for antiphase domain coarsening in a binary mixture. The proposed method is based on operator splitting techniques. The Allen–Cahn equation was divided into a linear and a nonlinear equation. First, the linear equation was discretized using a Crank–Nicolson scheme an...
متن کاملA conservative Allen–Cahn equation with a space–time dependent Lagrange multiplier
We present a new numerical scheme for solving a conservative Allen–Cahn equation with a space–time dependent Lagrange multiplier. Since the well-known classical Allen–Cahn equation does not have mass conservation property, Rubinstein and Sternberg introduced a nonlocal Allen–Cahn equation with a time dependent Lagrange multiplier to enforce conservation of mass. However, with their model it is ...
متن کاملPrimal-dual active set methods for Allen-Cahn variational inequalities
This thesis aims to introduce and analyse a primal-dual active set strategy for solving Allen-Cahn variational inequalities. We consider the standard Allen-Cahn equation with non-local constraints and a vector-valued Allen-Cahn equation with and without non-local constraints. Existence and uniqueness results are derived in a formulation involving Lagrange multipliers for local and non-local con...
متن کاملA Numerical Method for the Modified Vector-valued Allen–cahn Phase-field Model and Its Application to Multiphase Image Segmentation
In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen– Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 244 شماره
صفحات -
تاریخ انتشار 2014